
Lecture 7: More on SU(3)flavor

• Review from Last Time

• SU(2) and SU(3): Group Theory and Quark Model

Interpretation

• The Meson Multiplets

• The Baryon Multiplets

• Antiparticles

• Fermi Statistics and the Need for Color?

• SU(3) Breaking and Mass Formulaes

• Magnetic Moments



Review From Last Time

• Strongly interacting particles (hadrons) classified

as spin-1/2 baryons and integer spin mesons

– ∃ families of particles with same spin and parity

and similar masses, but with different charges.

– Strong interactions of particles within a family

are the same

– Eg, protons and neutrons have very similar

masses and see same nuclear interactions

• Postulate that particles within a family are related

by a symmetry property

– Isospin

– Once strangeness discovered, extend to SU(3)



Charge: Determined from Strangeness and IZ

• We’ve already seen that within an isospin multiplet,

different Iz have different charge

• Can generalize this observation for all light quark

(u,d,s) multiplets:

Q = Iz +
B + S

2

Define hypercharge Y ≡ B + S

• This is called the Gell Mann-Nishijima Eq

• Note: Because Q is determined from I3, EM inter-
actions cannot conserve isospin, but do conserve
I3

– This is analogous to the Zeeman effect in atomic physics

where a B field in z direction destroys conservation of an-

gular momentum, but leaves Jz as a good quantum num-

ber

• EM coupling ∼ 1% so effects of isospin non-

conservation are small and can be treated as per-

turbative correction to strong interaction



Group Theory Interpretation

• Describe particles with same spin, parity and

charge congugation symmetry as members of a

multiplet with different Iz and Y

• Will define (next 2 pages) raising and lowering op-

erators to navigate around the multiplet
• Gell Man and Zweig suggested that patterns of

multiplets could be explained if all hadrons were
made of quarks

– Mesons: qq 3 ⊗ 3 = 1 ⊕ 8

– Baryons: qqq 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10

• In those days, 3 flavors (extension to 6 discussed

later)



Introduction to Group Theory (via SU(2))

• Let’s start by reviewing SU(2) Isospin
• Fundamental representation: a doublet

χ =





u

d



 so u =





1

0



 d =





0

1





• Define rotation in isospin space in terms of infinites-
mal generators of the rotations

τ1 =





0 1

1 0



 , τ2 =





0 −i
i 0



 , τ3 =





1 0

0 −1





• The τ matrices satisfy commutation relations

[
1

2
τi,

1

2
τj ] = i

1

2
ǫijkτk

These commutation relations define the SU(2) al-

gebra

• We can have higher representations of SU(2): N ×
N matrices with N = 2I + 1

• Also, there is an operator that commutes with all
the τ ’s:

I2 = (
1

2
~τ )2 =

1

4
Σi τ

2

i

and there are raising and lowering operators

τ± =
1

2
(τ1 ± iτ2)



Extension to SU(3))

• SU(3): All unitary transformations on 3 component
complex vectors without the overall phase rotation
(U(1))

U †U = UU † = 1 det U = 1

U = exp[i
8

∑

a=1

λaθa/2]

• The fundamental representation of SU(3) are 3 × 3
matrices

λ1 =









0 1 0

1 0 0

0 0 0









λ2 =









0 −i 0

i 0 0

0 0 0









λ3 =









1 0 0

0 −1 0

0 0 0









λ4 =









0 0 1

0 0 0

1 0 0









λ5 =









0 0 −i
0 0 0

i 0 0









λ6 =









0 0 0

0 0 1

0 1 0









λ7 =









0 0 0

0 0 −i
0 i 0









λ8 = 1√
3









1 0 0

0 1 0

0 0 −2









• Commutation relations:
[

λa

2
,
λb

2

]

= ifabc

λc

2

where f123 = 1, f147 = f246 = f257 = f345 = 1
2,

f156 = f367 = −1
2

and f458 = f678 =
√

3/2.



SU(3) Raising and Lowering Operators
• SU(3) contains 3 SU(2) subgroups embedded in it

Isospin : F1 F2 F3

U − spin : F6 F7

√
3F8 − F3

V − spin : F4 F5

√
3F8 + F3

• For each SU(2) subgroup we can form the usual raising and lowering
operators

• Any two of the three subgroups are enough to navigate through all the
members of the multiplet

• Fundamental representation: A triplet

• Define group structure of the state by starting at one corner and using
raising and lowering operators

(V−)p+1φmax = 0

(I−)1+1φmax = 0

structure : (p, q)

• So quarks (u, d, s) have p = 1, q = 0 while antiquarks (u, d, s) have p =

0, q = 1



Combining SU(3) states (2 quarks)

• Combining two SU(3) objects gives 3 × 3 = 9 possible states

uu
1√
2
(ud+ du) 1√

2
(ud− du)

dd
1√
2
(us+ su) 1√

2
(us− su)

ss
1√
2
(ds+ sd) 1√

2
(ds− sd)

6 3

3 ⊗ 3 = 6 ⊕ 3

• We know that the triplet is a 3 from its I3 and Y :



Combining SU(3) states (a 3rd quark)

• 3 ⊗ 3 ⊗ 3 = 3 ⊗ (6 ⊕ 3) = 10s ⊕ 8M,S ⊕ 8M,A ⊕ 1

• Start with the fully symmetric part of the 6:

uuu 3 such states
1√
3
(ddu+ udd+ dud) 6 such states

1√
6
(dsu+ uds+ sud+ sdu+ dus+ usd) 1 such state

Ten states that are fully symmetric

• Now, the mixed symmetry part of the 6:

1√
6
[(ud+ du)u− 2uud] 8 such states

Eight states like this

• Now on to the 3:

1√
6
[(ud− du)s+ (usd− dsu) + (du− ud)s] 8 such states

Eight states like this

• Final state, totally antisymmetric



Combining SU(3) states (qq)

• Start with π+ = u d

• Using:
I − |u〉 = −

∣

∣

∣d
〉

I −
∣

∣

∣d
〉

= + |u〉

We find:
I−

∣

∣

∣ud
〉

= − |uu〉 + |dd〉

=
√

2 |I = 1 I3 = 0〉

π0 =
1√
2
(
∣

∣

∣dd
〉

− |uu〉)

Doing this again: π− = d u

• Now add strange quarks: 4 combinations
us ds us ds

K+ K0 K− K0

• One missing combination:
(dd+ uu− 2ss)/

√
6 ≡ η′

These 8 states are called an octet

• One additional independent combination: the sin-

glet state
(uu + dd + ss)/

√
6



Pseudoscalar Mesons (0−)

I I3 S Meson Combo Decay Mass (MeV)

1 1 0 π+ ud µ+ν 140

1 0 0 π0 1

2
(dd− uu) γγ 135

1 −1 0 π− du µ−ν 140
1

2

1

2
+1 K+ us µ+ν 494

1

2
−1

2
+1 K0 ds π+π− 498

1

2

1

2
−1 K− us µ−ν 494

1

2
−1

2
−1 K0 ds π+π− 498

0 0 0 η8
1√
6
(dd+ uu− 2ss) see below

0 0 0 η0
1√
3
(dd+ uu+ ss) see below

• Mass of strange mesons larger than non-strange by 150 MeV

– Strange quark has a larger mass than up and down

– Leads to SU(3) breaking in H

• The η8 and η0 are degenerate if SU(3) were a perfect symmetry

– Degenerate Pertubation Theory: The states can mix. Physical states
are:

∗ η: Mass=549 Decay:η → 2γ

∗ η′: Mass=958 Decays:η′ → ηππ or γγ



Vector Mesons (1−)

I I3 S Meson Combo Decay Mass (MeV)

1 1 0 ρ+ ud π+π0 776

1 0 0 ρ0 1

2
(dd− uu) π+π− 776

1 −1 0 ρ− du π−π0 776
1

2

1

2
+1 K∗+ us Kπ 892

1

2
−1

2
+1 K∗0 ds Kπ 892

1

2

1

2
−1 K∗− us Kπ 892

1

2
−1

2
−1 K∗0 ds Kπ 892

0 0 0 ω 1

2
(u+dd) 783 3π

0 0 0 φ ss 1019 KK

Last two states are given after the octet-singlet mixing. See the previous

page for the SU(3) symmetric wave functions

• Unlike the pseudoscalars which decay weakly, the vectors

can decay strongly

• The octet-nonet mixing is maximal in the case of the vector

mesons

– The φ is all ss while the ω is all uu and dd



Baryon Decouplet (3
2

−)

Baryon Octet (1
2

−)



Comments on Antiparticles

• For mesons, particle and antiparticle are in the

same multiplet

– The multiplet is called “self-charge conjugate”

• For baryons, the antiparticles are in different multi-

plets

– 10 ⇒ 10

– 8 ⇒ 8



A Comment on Fermi Statistics: Why Color

• Imposition of Fermi Statistics on Baryon States

– ∆++ = uu, spin=3/2, s-wave: These are all sym-

metric under interchange

– Need another degree of freedom to antisym-

metrize (must haver at least 3 possible states,

since we are antisymmetrizing 3 objects)

• We’ll see the week after next, that the QCD La-

grangian is based on an SU(3)color interaction

– Gluons are color octets

– Observable hadrons are color singlets

– The color singlet states are anti-symmetric un-

der color exchange

∗ This solves the Fermi statistics problem



SU(3) Breaking and Mass Relations

• In SU(3) symmetric world, all members of a multi-
plet should have the same mass

– Value of mass depends on binding energy: cannot calculate this since
perturbative non-relativistic calculations not possible for low energy
QCD

• Several reasons why the physical masses of the
hadrons in a multiple are different

– Difference in quark masses

∗ md > mu by a few MeV, ms heavier by ∼ 175 MeV

– Coulomb energy diffference associated with the electrical energy be-
tween pairs of quarks

∗ Of order e2/R0. With R0 ∼ 0.8 fm, this ∼ 2 MeV

– Magnetic energy differences associated with the magnetic moments
of the quarks (hyperfine interaction)

∗ Standard EM hyperfine splitting:

∆E = ~µ · ~B =
2

3
~µi · ~µj|ψ(0)|2 =

2π

3

α

mimj

~σi · ~σj |ψ(0)|2 (a few MeV)

∗ Color hyperfine splitting has same basic structure except α is re-
placed with αs and the numerical factor in front is different (due to
strong interaction color factors)

−α →






−4

3
αs for qq

−2

3
αs for qqq


